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Abstract. We consider a Bose-Einstein condensate which is split into two momentum components and then
“kicked” at the Talbot time by an optical standing wave. The mean energy growth is shown to be suppressed
or enhanced depending on the quantum phase between the two momentum components. Experimental
verification is provided and we discuss possible implications of our results for recently suggested applications
of kicked atoms.

PACS. 05.60.Gg Quantum transport – 05.45.Mt Quantum chaos; semiclassical methods – 03.75.Nt Other
Bose-Einstein condensation phenomena

1 Introduction

Interference is a fundamental effect in quantum mechan-
ics. In particular, the possibility of interference for ob-
jects which are classically point particles is one of the chief
well-springs of so-called “quantum weirdness”, that is, the
counter-intuitive differences between classical and quan-
tum mechanics. Moreover, quantum interference, along
with entanglement, also offers an extra resource absent in
classical physics which may be employed to improve mea-
surement sensitivity [1] or to gain speed-ups over classical
information processing algorithms [2,3].

In this letter we consider the possibilities that such
interference presents for the coherent control of energy
growth in the system known as the Atom Optics Kicked
Rotor [4]. This system consists of cold atoms which receive
sharp momentum kicks from a far-detuned optical stand-
ing wave with wave number k. The possibility of taking
advantage of quantum interference effects in this setting
has arisen due to the introduction of Bose-Einstein con-
densates (BEC) in kicked atom experiments [5]. Gong and
Brumer have predicted that preparing the rotor in an ini-
tial superposition of momentum eigenstates allows quan-
tum coherent control of the ensemble mean energy in both
chaotic regimes [6] and at quantum resonance [7]. Indeed,
it has already been demonstrated experimentally, that an
initial superposition of 0 and 1 momentum eigenstates (in
the units of the optical standing wave momentum quanta
2�k) can lead to a ratchet effect [8,9]. However, this ar-
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rangement does not allow non-trivial control of the ballis-
tic energy growth for the atoms.

Here we use a BEC in a different initial configura-
tion to [8,9] in order to examine control of the ballistic
energy growth rate. Our system is comprised of a BEC
which is coherently split into two momentum components
separated by 4�k. This initial state is then subjected to
sharp momentum “kicks” from a periodically pulsed opti-
cal standing wave. The two initial momentum components
in superposition evolve in principle as separate dynamical
systems but because they have phase coherence, quantum
interference occurs leading to changes in the overall dy-
namics. In particular the rate at which the mean energy
of the system increases may be suppressed or enhanced
compared with the standard case by adjusting the quan-
tum phase between the two systems.

2 Theory

The Hamiltonian for an atom which experiences δ-kicks
with period T , is given by [10]

Ĥ =
p̂2

2
+K cos(2kx̂)

∑

t

δ(t′ − tτ), (1)

where p̂ and x̂ are the atomic momentum and position
operators respectively, k is the kicking strength parameter,
t′ is time, t is the kick counter and τ = 4πT/66.3 × 10−6

is the scaled kicking time.
The one kick evolution operator for atoms subject to

a standing wave pulse followed by a period of free evo-
lution is [11] Û = exp(−iK cos(2kx̂)) exp(−iτ p̂2/2). In
this paper, we are interested in what happens when the
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Fig. 1. (Color online) Theoretical wavefunctions ((a) and (b))
and energy vs. time curves for interfering kicked rotor systems
with k = 0.14. In (a), the unfilled bars show the initial wave-
function for which the quantum phase is φ = π. The filled bars
show the absolute value of the wave function (i.e. the square
root of the momentum distribution) after 7 kicks. In (b) the
case for φ = 0 is shown for the same parameters. In (c) the
mean energy of the atomic ensemble is shown (minus the ini-
tial energy) for φ = π (dashed line), φ = 0 (dotted line) and
the standard result (i.e. where there is only one kicked rotor
system and no quantum interference) (solid line).

quantum resonance condition is fulfilled, namely that the
atoms start in an initial momentum eigenstate (or super-
position thereof) and that the pulse period is equal to the
Talbot time (or τ = 4π). In this case, it may be shown
that the second exponential term reduces to unity and
the evolution operator for quantum resonance becomes
Ûq.r.(t) = exp(−iKt cos(2kx̂)).

We now extend the analytical results of reference [11]
to the case where the initial state is of the form

|ψi〉 = 1/
√

2(|0�k〉 − eiφ| − 4�k〉) ≡ 1/
√

2(|0〉 − eiφ| − 2〉),
(2)

where the superposed states are momentum eigenstates
defined by p̂|n〉 = n|n〉. Cohen’s result [12] ψo(m) =
〈m|Ûq.r.|n〉 = (−i)m−nJm−n(Kt) may be used to find the
output wavefunction ψo after kicking and thus the theo-
retical momentum distribution P (m) = |ψo|2, giving

P (m) =
1
2
J2

m(Kt)+
1
2
J2

m+2(Kt)+cosφJm(Kt)Jm+2(Kt).

(3)
The first two terms in this equation are the usual momen-
tum distributions for atoms starting with momenta 0 and
−4�k respectively and kicked at quantum resonance [11].
The final term is an interference term which modifies the
overall momentum distribution. Predicted wavefunctions
for the cases where φ = π and φ = 0 are shown in Fig-
ures 1a and 1b respectively. For the φ = π case, the mo-
mentum spread of the atoms is suppressed due to con-
structive interference of atoms in the −2�k momentum
state and corresponding destructive interference at higher
momenta. Conversely when the phase is set to 0, destruc-
tive interference in the −2�k momentum state leads to

Fig. 2. (Color online) The mean energy of a kicked superpo-
sition state after 7 kicks as a function of the quantum phase
φ for k = 0.14. The solid line shows the theory given in equa-
tion (5), and the squares show data from quantum simulations.
Crosses show experimental data for three values of φ and the
circle marks the value measured in the case of no initial Bragg
diffraction (which was used to determine k for these experi-
ments). The inset shows simulation energies as a function of
the kicking period T demonstrating the suppressed height of
the quantum resonance peak for the φ = π case (solid line)
compared with the φ = π/2 case (dashed line) and the en-
hancement which is possible in the φ = π case (dotted line).

redistribution of atoms to higher momenta and a conse-
quent increase in the mean energy. The mean energy may
be calculated by evaluating the second moment of the mo-
mentum distribution 2E = 〈p2〉 =

∑
mm2Pn(m). Substi-

tuting 3 gives

E(k, t) =
1
4
K2t2 + cosφ

∑

m

m2Jm(Kt)Jm+2(Kt)

=
1
4
K2t2 + cosφC(Kt), (4)

where C(Kt) =
∑

mm2Jm(Kt)Jm+2(Kt). Cn(z) may be
evaluated by successive applications of the Bessel recur-
sion formula mJm(z) = z/2(Jm−1(z) + Jm+1(z)) along
with Graf’s theorem [13] giving Cn(z) = z2/4. Thus
the mean energy of the interfering kicked rotor system
is given by

E(Kt) =
1
4
K2t2 + cos(φ)

1
8
K2t2. (5)

Equation (5) shows that in principle, the energy growth
rate at quantum resonance can be suppressed or enhanced
by up to 50% by varying the relative phase between the
two momentum states as shown in Figure 2. This coher-
ent control of the dynamics is afforded by quantum in-
terference which redistributes atoms into higher or lower
momentum orders depending on the quantum phase. The
inset to Figure 2 shows simulated energies as the kicking
period T is swept over the quantum resonance at T = TT

for three different values of the quantum phase φ. It may
be seen that the interference effect gives rise to broad-
ening and narrowing of the peak for φ = π and φ = 0
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respectively. Figure 2 also shows quantum simulation re-
sults for comparison with the theory. The simulations are
of the single particle Hamiltonian (1), since on the time
scales of the experiments performed here, atom-atom in-
teractions in the BEC and also the effect of the harmonic
trap potential may be ignored [5]. We note from the out-
set that the increase in the energy growth rate found here
cannot be gained just by redefining the time at which the
first kick occurs in the normal kicked rotor. For example,
defining the first j kicks as a state preparation phase gives
E = (1/4)K2(t+ j)2, i.e. the energy increases faster than
the usual case due to redefinition of the time origin. How-
ever the coefficient of ballistic growth cannot be changed
by a mere shifting of the time origin in the standard kicked
rotor experiment. It turns out that for the rectified diffu-
sion experiment performed previously [8], any increase in
the energy growth rate due to the initial superposition is
merely of this trivial kind. The effect seen in this paper is
new precisely because it leads to a non-trivial increase in
the ballistic growth coefficient itself (conversely, no ratchet
effect is observed for the configuration considered here).

It is also worth noting that, until now, the maximum
energy growth rate for kicked atoms was k2t/2, which gen-
erally occurs for atoms in an initial momentum eigenstate
kicked at quantum resonance1. However, this growth rate
is also found in the semiclassical limit of the kicked rotor,
as shown in reference [18]. Therefore, it is fair to say that
until now, the quantum kicked rotor has not been able to
exceed the classical maximum momentum diffusion rate.
The effect seen here, however, uses quantum coherence to
push the diffusion rate above the classical maximum.

3 Experimental results

We now consider the experimental verification of equa-
tion (3). In order to realise the system experimentally, we
use a combination of Bragg diffraction of atoms to create
the initial superposition state required, followed by the
usual kicking procedure used to realise the atom optics
kicked rotor (AOKR) with atoms in a pulsed standing
wave [4]. Our basic experimental setup and method has
been explained in detail elsewhere [14,15]. The main de-
tails are as follows: A BEC of ∼3 × 103 87Rb atoms is
realised and loaded onto an atom chip [15]. The atoms are
trapped in the 5S1/2, F = 2, mf = 2 state by the mag-
netic field generated by the chip and sit 700 µm below
the chip surface. Typically, the axial trapping frequency
for the BEC is ωz ≈ 2π × 17 Hz and the axial and ra-
dial Thomas-Fermi radii are dz = 17 µm and dρ = 3 µm
respectively.

As discussed in reference [8] our experiments consist
of an initial state engineering phase, to prepare the BEC
in a desired momentum superposition state, followed by
a kicking phase to induce the resonant transport of the
atoms. This is followed by standard absorption imaging
of the BEC after a 25 ms flight time [14].

1 Away from quantum resonance, the growth rate oscillates
about the quasilinear value k2/4 before dynamical localisation
sets in.

Experimentally, preparation of the initial state is
achieved through the combination of a Bragg pulse
followed by a period ∆φ of free evolution to adjust
the quantum phase. Two counterpropagating beams are
aligned along the z-axis of the condensate to provide the
Bragg/kicking beams for the experiment. The beams have
a Gaussian profile with a half width of ∼1.0 mm. The
optical power is 5 mW and the detuning from the 87Rb
52S1/2 → 52P3/2 resonance is ∼4 GHz. We use the same
two beams to provide both the Bragg pulse and the kicking
pulses. However the parameters required in each case are
quite different. To solve this problem we use two synchro-
nised Agilent 33250A function generators to provide driv-
ing signals for the AOMs which control each Bragg beam.
We control the frequency of one generator using frequency
shift keyed (FSK) modulation to provide the required fre-
quency difference ∆ω between the two Bragg beams, and
use externally gated amplitude modulation of the other
generator to ensure that the geometric mean

√
I1I2 of the

Bragg beams is sufficiently low to give coherent Bragg
diffraction over a pulse interval of ∆B ∼ 100 µs (for a
π/2 pulse). In the experiments described here, the ampli-
tude of beam 1 is reduced to IB = 0.12I0 for the Bragg
pulse. The envelope of the pulses, (including the quantum
phase accumulation time and kicking) ∆φ and the timing
of the FSK and amplitude modulation is controlled by an
additional function generator (NF Wavefactory 1966).

Because the BEC is so cold (≈10 nK) it may be consid-
ered, to a good approximation, to be in a |0�k〉 momentum
eigenstate before the state engineering phase [14]. This as-
sertion is supported by the recent measurements of high
order quantum resonances made using a BEC as reported
recently by Ryu et al. [16]. In that study, ballistic mo-
mentum growth was observed for up to 20 kicks — almost
three times as many as studied here — and no signif-
icant variation was observed due to the small non-zero
quasimomentum of the atoms2. If we choose ∆ω = 8ωr

where (where ωr ≈ 2.37×104 Hz is the recoil frequency of
87Rb) the state after application of the Bragg π/2 pulse
is given by

|ψi〉 =
1√
2
|0�k〉 − 1√

2
| − 4�k〉. (6)

The atoms are then allowed to evolve freely for a time ∆φ

giving rise to a relative phase shift between the superposed
states of φ = (8�k2

l )t/MRb ≈ 9.48× 104∆φ, and the state
just before kicking occurs is then

|ψi〉 =
1√
2
(|0�k〉 − eiφ| − 4�k〉), (7)

as assumed by the theory in equation (2). After the ini-
tial preparation of the atomic wavefunction, the frequency
and intensity of the beams is made equal to provide the
optical standing wave necessary for kicking. As in other

2 In line with the predictions of reference [20], however, it
would be expected that after a large number of kicks, the non-
zero momentum width of the condensate would result in sub-
ballistic energy growth.
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Fig. 3. Images of initial state preparation and kicking of the
BEC with corresponding image cross sections showing the rela-
tive atomic population N . (a) shows the BEC after preparation
of an approximate |ψi〉 = (1/

√
2)(|0�k〉+ |− 4�k〉) initial state

using a Bragg π/2 pulse. The |0�k〉 and |− 4�k〉 are indicated.
In (b) atoms were diffracted by 3 kicks starting from an initial
|0�k〉 eigenstate, whereas in (c) the kicks were applied after the
preparation of the BEC in state ψi. The noise floor has been
suppressed in the images only, allowing a clearer picture of the
atoms. The cross sections were created by summing over the
rows of the images.

recent reports, we have found that performing the kicking
experiments in trap is not problematic since the energy
gained by the atoms due to kicking far exceeds the trap-
ping frequency and atom-atom interactions [5]. Therefore
a single particle analysis is sufficient to describe the dy-
namics as we now show. For the analytical solution of the
atomic dynamics, we assumed that the kicking pulses were
ideal δ functions. Although this is not well approximated
in most experiments, the analytical predictions turn out
to be remarkably robust against non-zero pulse widths
and non-rectangular pulse shapes so long as the number
of kicks and mean atomic energy remains low [17,18].

In our experiments, the atoms are imaged after kicking
using standard absorption imaging techniques [14]. The
resulting atomic distribution can then be analysed to cal-
culate the atomic momentum distribution and also the
mean energy of the kicked atomic ensemble. Figure 3a
shows an absorption image of the BEC after application
of a Bragg π/2 pulse with ∆ω ≈ 30 kHz and with no
kicking applied. The atoms are clearly separated into two
distinct momentum classes of roughly equal amplitude.
The lower plot of Figure 3a shows a 1D atomic density
distribution calculated by summing over the rows of the
absorption image. Because the momentum separation of
each group of diffracted atoms is known to be 2�k, the fi-
nal momentum distribution of the atoms may be inferred
from the normalised density distribution. In Figure 3b a
kicked condensate is shown (starting from an initial |0�k〉
eigenstate) after 3 kicks have been delivered demonstrat-
ing the usual diffraction of atoms into higher momentum
orders. In Figure 3c the same thing is shown for a conden-
sate which has been prepared in the initial state |ψi〉. We

Fig. 4. Experimental (left column) and theoretical (right col-
umn) atomic momentum distributions are shown for the case
of no initial superposition state. The vertical axis of the exper-
imental data is in arbitrary units, whilst the horizontal axis
shows the momentum m in units of 2�k. The simulations are
for k = 0.14. Atoms are coupled symmetrically into higher
momentum orders about the 0 momentum eigenstate.

note that as more kicks are delivered, the signal-to-noise
ratio of the data becomes noticeably worse as the con-
densate is diffracted into higher momentum orders, which
prevents us from probing high kick numbers or kicking
strengths for these experiments.

Figures 4–6 show experimentally obtained momentum
distributions after 7 kicks for the experimental realisation
of the interfering kicked rotor system alongside theoreti-
cally predicted momentum distributions. Figure 4 shows
the “control” case in which the initial state is |0�k〉. From
the observed diffraction, the kick strength parameter k
was estimated to be 0.14 and this value has been used
to create the theoretical distributions shown in the right
hand column. In Figure 5 the initial state was prepared
in the superposition state |ψi〉 with a relative quantum
phase φ = π between the states. As can be seen this leads
to a marked increase in the number of atoms in the central
momentum state (which is |−2�k〉) leading to a lower mo-
mentum spread and hence mean energy than that found
in the control case.

For φ = 0, as seen in Figure 6, the momentum spread
about −2�k is greatly enhanced compared with the φ = π
case. Most notably, the population of the −2�k state re-
mains relatively small compared with the other states for
the first few kicks, unlike the case for φ = π. We note
however, that although this larger momentum spread is
in qualitative agreement with equation (3) the observed
momentum distributions do not agree so well quantita-
tively with the theoretical predictions. In fact, although
we were able to show suppression of energy growth con-
sistently in our experiments, enhancement of the energy
growth coefficient was not clearly observed in all cases.
The enhancement effect relies on the precise cancellation
of the atomic momentum-space wavefunction at −2�k,
which can easily be ruined by slight fluctuations in the



M. Sadgrove et al.: Coherent control of ballistic energy growth for a kicked Bose-Einstein condensate 233

Fig. 5. Experimental (left column) and theoretical (right col-
umn) atom distributions are shown for the case an initial su-
perposition state with φ = π. The simulations are for k = 0.14.
Suppression of momentum growth by constructive interference
in the −�k momentum state is clearly seen.

Fig. 6. Same as Figure 5 but with φ = 0.

power and detuning of the free running Bragg laser which
lead to slight inequalities in the populations of the 0�k
and −4�k states or even slight population of the −2�k
momentum order in the initial state. Indeed, some asym-
metry is apparent in the initial superposition state. Such
experimental imperfections ruin the interference required
to reliably demonstrate the enhancement effect in the lab.
This situation could be improved by introducing a sepa-
rate laser for performing Bragg diffraction which could be
further detuned from atomic resonance, thus reducing the
effect of small fluctuations in wavelength or power of the
laser. Nonetheless, the experimental results demonstrate
that the interference effect occurs and leads to the alter-
ation of the energy growth rate compared with the stan-
dard result. In the current experiments, it proved difficult
to accurately measure the mean energy from the atomic

momentum distribution mainly due to the low atom num-
ber and the resulting low signal to noise ratio. Future ex-
periments with increased atom number should enable the
reliable measurement of the theoretical curves seen in Fig-
ure 2.

4 Discussion

It seems pertinent to ask whether any other easily prepara-
ble momentum states offer the same benefits as the |ψ〉 =
(1/

√
2)(|0�k〉 − | − 4�k〉) state. After all, in a standard

kicked rotor experiment, starting from a single momentum
eigenstate, the first kick creates a momentum superposi-
tion state whose components then interfere during sub-
sequent kicks. However, although the standard kicked ro-
tor experiments essentially involve a kicked superposition
state after the first kick, there is no way to control the
quantum phase or amplitude of each momentum state in
the superposition. Engineering the initial state to have a
specific relative quantum phase and amplitude is the fea-
ture that allows the ballistic diffusion rate to be controlled
in this investigation. It has been shown that a superposi-
tion of the 0�k and −2�k eigenstates leads to directional
momentum transport [8,9], although, as noted earlier, no
control over the ballistic growth rate is available in this
case. Furthermore, numerical simulations suggest that ini-
tial superpositions of two states separated by more than
4�k in momentum space do not exhibit quantum phase
dependent changes in the diffusion rate.

We now speculate as to the possible advantages of the
system studied here in applications compared with the
normal kicked atom system. In the first place we con-
sider the utility of the standard quantum resonance ef-
fect as augmented by our technique. As first shown in
reference [19] for the two frequency kicked rotor system,
the kicked rotor system contains resonances which exhibit
sub-Fourier narrowing with time, potentially allowing the
differentiation of two frequencies in a time which beats the
Fourier limit. This feature is due to the nonlinear nature
of the quantum kicked rotor. The quantum resonance in
mean energy employed in this paper has also been shown
to exhibit such sub-Fourier scaling of the resonance width
with time (a property which can be explained using a
semi-classical description of the quantum resonance) [20].
Therefore, one could in principle distinguish the differ-
ence between a kicking signal’s frequency and exact quan-
tum resonant frequency in sub-Fourier time by monitor-
ing the width of the atomic momentum distribution of
the kicked atoms. Our method can increase the sharpness
of the quantum resonance curve (see the inset of Fig. 2)
thereby providing a purely quantum increase to the sensi-
tivity of any sub-Fourier frequency measurement schemes
(although it should be noted that the overall scaling of the
resonance peaks is expected to remain the same).

More generally, the increase in energy diffusion over
the classical value may give rise to a quantum-over-
classical speed-up in any process which relies on momen-
tum diffusion. To use a contemporary example, recent
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studies suggest links between quantum resonance and dis-
crete time quantum random walks (QRW) [21]. QRW are
of interest partially because they can be used to implement
quantum search algorithms [22]. Very recently, there has
been a proposal to implement QRW using a BEC in a mo-
mentum superposition state such as that used here [24].
Additionally, there is a separate proposal for implement-
ing QRW in kicked cold atoms using a superposition of
internal atomic electronic states to create the “quantum
coin” effect needed for QRW [23]. Because the quantum
random walk takes place in momentum space, it may be
possible to use an additional superposition of momentum
states to enhance the momentum diffusion, hence speed-
ing up the random walk through momentum space and
plausibly any algorithm based on the random walk.

Lastly, we note the possibility of using the effect seen
here is to distinguish the phase of momentum eigen-
states in a superposition. In principle, for superpositions
of several different eigenstates, the interference proper-
ties we have explored for a two state superposition should
uniquely identify a single phase flipped state amongst a su-
perposition otherwise consisting of states with 0 relative
phase, since the output momentum distribution depends
sensitively on interference between the states in superpo-
sition (a similar effect has also been noted by Gong [7]).
Assuming that it is possible to set the phase of each eigen-
state independently, this suggests the possibility of storage
and retrieval of information using the quantum phase of
the eigenstates in a similar way to that performed with
Rydberg atoms in reference [25] (which are also promis-
ing due to the existence of stable quantum wave packets
for Rydberg atoms [26]). That is, starting from an initial
superposition state, the operations afforded by applying
pulses from an optical lattice are conceivably sufficient to
perform some quantum information processing algorithms
on the states in superposition (although such a scheme
would certainly not be a universal quantum computer).
This idea is the subject of ongoing research.

In conclusion, we have presented a method of coher-
ently controlling the ballistic quantum transport of atoms
subject to Talbot pulses from an optical lattice. The
method uses quantum interference between two coherent
kicked atom systems to adjust the ballistic growth rate
of the kicked atoms by up to 50%. The observed effect
may be explained in terms of the interference between the
matterwaves diffracted from the two initial sources. We ex-
pect that recent proposals for making use of the properties
of quantum resonant dynamics will benefit from similar
quantum interference methods.

This work was partly supported by a Grant-in-Aids for Science
Research (17340120) from the Ministry of Education, Science,
Sports and Culture, and the 21st Century COE program on
“Coherent Optical Science”.
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